1.Give the relationship that represents the dual of the Boolean property A + 1 = 1? (Note: * = AND, + = OR and ' = NOT) 5.A * 1 = 1Ö 3.1 or 2 2.D + E 3.A'B'C' 4.D'E' 1.Z + YZ 2.Z + XYZ 3.XZ 4.X + YZ 1.F = xy 3.F = x' 1.A + B 2.A'B' 4.C'D'E' 1.A 2.A' 3.1Ö 4.0 1.ABCDEF 2.AB |
Tugas 4 A Sistemlogika
HukumAljabar Boolean
HukumAljabar Boolean
T1. HukumKomutatif
(a) A + B = B + A, pembuktian:
A | B | A+B | B+A |
0 | 0 | 0 | 0 |
0 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 |
(b) A B = B A, pembuktian:
A | B | AB | BA |
0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
1 | 1 | 1 | 1 |
T2. HukumAsosiatif
(a) (A + B) + C = A + (B + C),pembuktian:
A | B | C | A+B | B+C | (A+B)+C | A+(B+C) | ||||
0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||
0 | 0 | 1 | 0 | 1 | 1 | 1 | ||||
0 | 1 | 0 | 1 | 1 | 1 | 1 | ||||
0 | 1 | 1 | 1 | 1 | 1 | 1 | ||||
1 | 0 | 0 | 1 | 0 | 1 | 1 | ||||
1 | 0 | 1 | 1 | 1 | 1 | 1 | ||||
1 | 1 | 0 | 1 | 1 | 1 | 1 | ||||
1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||
| | | | | | | | | ||
(b) (A B) C = A (B C),pembuktian:
A | B | C | A B | B C | (A B) C | A (B C) |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 1 | 1 | 1 |
T3. HukumDistributif
(a) A (B + C) = A B + A C,pembuktian:
A | B | C | B+C | A B | A C | A (B+C) | A B+A C |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
(b) A + (B C) = (A + B) (A + C),pembuktian:
A | B | C | B C | A+B | A+C | A+(B C) | (A+B)(A+C) |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
T4. Hukum Identity
(a) A + A = A,pembuktian:
A | A + A |
0 | 0 |
0 | 0 |
1 | 1 |
1 | 1 |
(b) A A = A,pembuktian:
A | A A |
0 | 0 |
0 | 0 |
1 | 1 |
1 | 1 |
1. A B + AB = A (BENAR),pembuktian:
A | B | B(invers) | A B | A B(invers) | A B + AB = A |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 1 |
1 | 1 | 0 | 1 | 0 | 1 |
(b) ( A+B)(A+B)=A (BENAR),pembuktian:
A | B | B(invers) | A+B | A+B(invers) | ( A+B) (A+B)=A |
0 | 0 | 1 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 1 | 1 | 1 |
T6. HukumRedudansi
(a) A + A B = A (BENAR), Pembuktian:
A | B | A B | A + A B |
0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 |
1 | 0 | 0 | 1 |
1 | 1 | 1 | 1 |
(b) A (A + B) = A (BENAR),pembuktian:
A | B | A + B | A (A + B) = A |
0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 |
1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 |
(a) 0 + A = A (BENAR), Pembuktian:
A | 0 | 0 + A = A |
0 | 0 | 0 |
0 | 0 | 0 |
1 | 0 | 1 |
1 | 0 | 1 |
(b)0 A = 0 (BENAR), Pembuktian:
A | 0 | 0 A = 0 |
0 | 0 | 0 |
0 | 0 | 0 |
1 | 0 | 0 |
1 | 0 | 0 |
(a) 1 + A = 1(BENAR)
A | 1 | 1 + A |
0 | 1 | 1 |
0 | 1 | 1 |
1 | 1 | 1 |
1 | 1 | 1 |
(b) 1 A = A (BENAR), Pembuktian:
A | 1 | 1 A = A |
0 | 1 | 0 |
0 | 1 | 0 |
1 | 1 | 1 |
1 | 1 | 1 |
T9
(a.) A + A =1 (BENAR)
A | A | 1 | A + A =1 |
0 | 1 | 1 | 1 |
0 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
1 | 0 | 1 | 1 |
(b) A A = 0 (BENAR)
A | A | 0 | A A = 0 |
0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 |
T10
(a)A + A B =A + B(BENAR)
A | B | A | A B | A+B | A + A B =A + B |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 1 | 1 |
1 | 1 | 0 | 0 | 1 | 1 |
(b) A (A + B) = A B(BENAR)
A | B | A | A +B | A B | A ( A +B) = A B |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 1 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 1 |
T11. TheoremaDe Morgan's
1. (A + B) = A B
A | B | A | B | A+B | (A+B) | AB |
0 | 0 | 1 | 1 | 0 | 1 | 1 |
0 | 1 | 1 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 0 | 0 |
(b) (A B) = A + B (BENAR)
A | B | A | B | A B | (A B) | A + B |
0 | 0 | 1 | 1 | 0 | 1 | 1 |
0 | 1 | 1 | 0 | 0 | 1 | 1 |
1 | 0 | 0 | 1 | 0 | 1 | 1 |
1 | 1 | 0 | 0 | 1 | 0 | 0 |